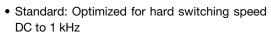


Vishay High Power Products

"Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 200 A



INT-A-PAK

PRODUCT SUMMARY					
V _{CES}	600 V				
I _C DC	480 A				
V _{CE(on)} at 200 A, 25 °C	1.13 V				

FEATURES

• Generation 4 IGBT technology

- Very low conduction losses
- Industry standard package
- UL approved file E78996
- Compliant to RoHS directive 2002/95/EC
- Designed and qualified for industrial level

BENEFITS

- · Increased operating efficiency
- · Direct mounting to heatsink
- Performance optimized as output inverter stage for TIG welding machines

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Collector to emitter voltage	V _{CES}		600	V	
Continuous collector current	,	T _C = 25 °C	480		
	IC	T _C = 116 °C	200	•	
Pulsed collector current	I _{CM}		800	A	
Peak switching current	I _{LM}		800		
Gate to emitter voltage	V _{GE}		± 20	V	
RMS isolation voltage	V _{ISOL}	Any terminal to case, t = 1 minute	2500	V	
Maximum power dissipation	В	T _C = 25 °C	830	14/	
	P_{D}	T _C = 85 °C	430	W	

ELECTRICAL SPECIFICATIONS (T _J = 25 °C unless otherwise specified)							
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS	
Collector to emitter breakdown voltage	V _{BR(CES)}	$V_{GE} = 0 \text{ V}, I_C = 1 \text{ mA}$	600	-	-		
Collector to emitter voltage	V _{CE(on)}	V _{GE} = 15 V, I _C = 200 A	-	1.13	1.21	V	
		$V_{GE} = 15 \text{ V}, I_{C} = 200 \text{ A}, T_{J} = 125 ^{\circ}\text{C}$	-	1.08	1.18		
Gate threshold voltage	$V_{GE(th)}$	I _C = 0.25 mA	3	4.5	6		
Collector to emitter leakage current	I _{CES}	$V_{GE} = 0 \text{ V}, V_{CE} = 600 \text{ V}$	-	0.025	1	A	
		V _{GE} = 0 V, V _{CE} = 600 V, T _J = 125 °C	-	-	10	mA	
Gate to emitter leakage current	I _{GES}	V _{GE} = ± 20 V	-	-	± 250	nA	

Document Number: 94362 Revision: 03-May-10

GA200HS60S1PbF

Vishay High Power Products "Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 200 A

SWITCHING CHARACTERISTICS (T _J = 25 °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Total gate charge	Qg	I _C = 200 A	-	1600	1700	
Gate to emitter charge	Q_{ge}	V _{CC} = 400 V	-	260	340	nC
Gate to collector charge	Q_{gc}	V _{GE} = 15 V	-	580	670	
Turn-on switching loss	E _{on}	I _C = 200 A, V _{CC} = 480 V, V _{GF} = 15 V	-	30	=	
Turn-off switching loss	E _{off}	$R_g = 10 \Omega$	-	50	=	mJ
Total switching loss	E _{ts}	Freewheeling diode: 30EPH06, T _J = 25 °C	-	80	-	
Turn-on switching loss	E _{on}	I _C = 200 A, V _{CC} = 480 V, V _{GF} = 15 V	-	34	=	
Turn-off switching loss	E _{off}	$R_g = 10 \Omega$	-	104	=	mJ
Total switching loss	E _{ts}	Freewheeling diode: 30EPH06, T _J = 125 °C	-	138	151	
Input capacitance	C _{ies}	V _{GF} = 0 V	-	32 500	-	
Output capacitance	C _{oes}	V _{CC} = 30 V	-	2080	-	pF
Reverse transfer capacitance	C _{res}	f = 1.0 MHz	-	380	-	

THERMAL AND MECHANICAL SPECIFICATIONS							
PARAMETER		SYMBOL	MIN.	TYP.	MAX.	UNITS	
Operating junction temperature range		T _J	- 40	-	150	°C	
Storage temperature range		T _{Stg}	- 40	-	125		
Junction to case per leg		R _{thJC}	-	-	0.15	°C/W	
Case to sink		R _{thCS}	-	0.1	-	C/VV	
Mounting torque	case to heatsink		-	-	4	- Nm	
	case to terminal 1, 2, 3		-	-	3		
Weight			-	185	-	g	

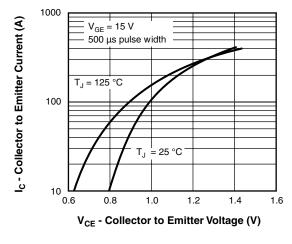


Fig. 1 - Typical Output Characteristics

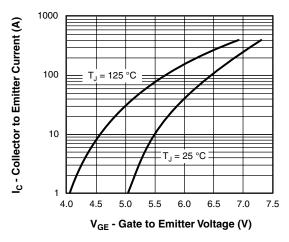


Fig. 2 - Typical Transfer Characteristics

"Half-Bridge" IGBT INT-A-PAK Vishay High Power Products (Standard Speed IGBT), 200 A

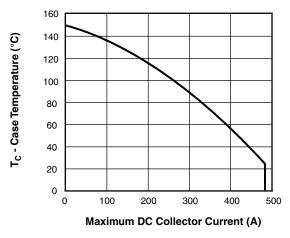


Fig. 3 - Case Temperature vs. Maximum Collector Current

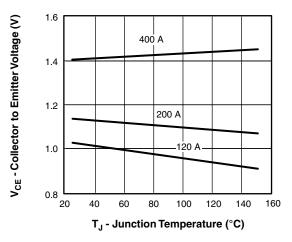


Fig. 4 - Typical Collector to Emitter Voltage vs. Junction Temperature

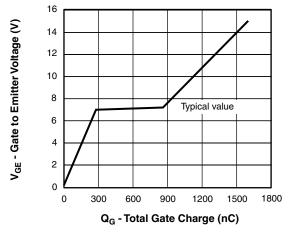


Fig. 5 - Typical Gate Charge vs. Gate to Emitter Voltage

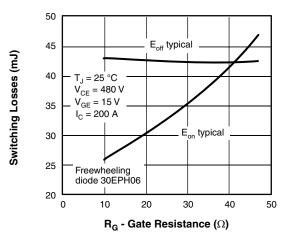


Fig. 6 - Typical Switching Losses vs. Gate Resistance

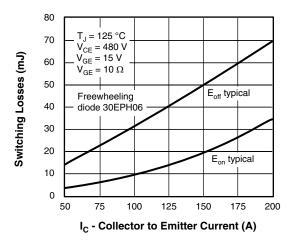
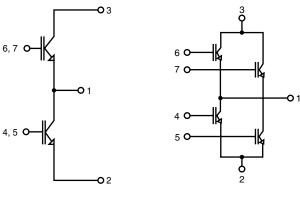
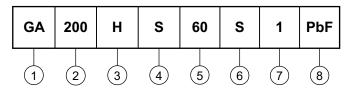



Fig. 7 - Typical Switching Losses vs. Collector to Emitter Current

Functional Diagram Electrical Diagram


GA200HS60S1PbF

Vishay High Power Products "Half-Bridge" IGBT INT-A-PAK (Standard Speed IGBT), 200 A

ORDERING INFORMATION TABLE

Device code

1 - Essential part number IGBT modules

2 - Current rating (200 = 200 A)

Circuit configuration (H = Half bridge without f/w diode)

4 - INT-A-PAK

5 - Voltage code (60 = 600 V)

6 - Speed/type (S = Standard speed IGBT)

Assy location ItalyPbF = Lead (Pb)-free

LINKS TO RELATED DOCUMENTS				
Dimensions	www.vishay.com/doc?95067			

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Revision: 18-Jul-08

Document Number: 91000 www.vishay.com